
Probing a Simplified Model of the Belousov-Zhabotinsky Reaction

18.300 Continuum Applied Mathematics

Jade Chongsathapornpong
MIT, Cambridge, MA 02139

(Dated: January 6, 2023)

I. INTRODUCTION

Excitable media are those which, from an initial qui-
escent state, exhibit traveling waves excited by defects
or perturbations which exceed some threshold. After a
period of recovery, the system supports further waves [1].
The Belousov-Zhabotinsky (BZ) reaction exhibits oscil-
latory behavior which can produce such waves, includ-
ing visually striking spirals. The system of reactions is
highly complex; an early attempt at explaining the phe-
nomenon involved numerous reaction steps between 11
species [2]. Fortunately, it was found that the dynamics
of excitable media can be captured with simplified mod-
els. The so-called Oregonator model [3] is perhaps the
most well-known, and is based on studies of the chemical
mechanism. In this project, we will explore a less-studied
simplified model proposed by science writer Philip Ball,
which is claimed to vaguely model the BZ system. We’ll
approach this analytically and numerically, to character-
ize the simplified model and attempt to reproduce trav-
eling and spiral waves.

Code for this project can be found here:
https://github.com/Certaingemstone/reactdiff

II. REACTION-DIFFUSION MODEL

The underlying mechanism of the BZ reaction is com-
monly understood as the interplay between two compet-
ing processes which dominate under different conditions,
in particular dependent on the concentration of bromide
ions in solution. Under high bromide concentrations,
one process consumes bromide ions monotonically, un-
til descending through a certain threshold concentration
where the other process dominates. This second process
rapidly oxidizes a transition metal catalyst—for example,
an Fe(II) phenanthroline complex becomes Fe(III) or, in
the case of the original reaction, Ce(III) becomes Ce(IV).
This oxidation corresponds to a visible color change. Dif-
fusion pushes neighboring solution through the threshold,
so this color change propagates. Another set of slower
reactions are catalyzed which eventually regenerate bro-
mide ion and reduces the catalyst back to its original
state and color, at which point the cycle can repeat [2].

A simplified model for this reaction was described in

FIG. 1: Target patterns in BZ reaction, from [2]. Periodic
"trigger" waves propagate from imperfections in the solution.
The imperfections can under some circumstances be removed,
leaving the reagents in a steady state.

the work of Field, Körös, and Noyes, who had previ-
ously investigated the pertinent chemistry. Their scheme,
dubbed the "Oregonator," is as follows:

A + Y X
X + Y P

2 B + 2 X 4 X + 2 Z
2 X Q
2 Z 2 Y

where Y corresponds to the bromide ions and Z to the
oxidized transition metal species. It turns out that this
model leads to a coupled system of nonlinear differential
equations of which one is "stiff"—in certain regions of
state space, an explicit numerical solution becomes sen-
sitive to small errors around an exact solution [3]. This
renders the equations not amenable to simple explicit
solvers without prohibitively small time steps. And the
problematic equation being nonlinear, an implicit scheme
is likely "not a picnic," according to R. Rosales.

For the purposes of this project, we will investigate an
even simpler model which no longer corresponds directly
to the physical BZ mechanism, but purportedly exhibits
the same excitation-recovery behavior. This model is a

https://github.com/Certaingemstone/reactdiff


2

modified version of one due to P. Ball [4]:

A + B 2 A
B + C 2 B
C + A 2 C

Here, a symmetric set of 3 reactions transform circularly
between A, B, and C. Each is autocatalyzed, that is,
the interaction between A and B tends to convert B into
A, and so on. To write equations describing the species’
time evolution, we employ the law of mass action, which
proposes that reaction rates will be proportional to the
rates of collision between reacting species. Assuming a
homogeneous mixture, this would imply that the rates
are proportional to the product of reactant concentra-
tions. For example, the first forward reaction proceeds
at rate k1+ab, and its reverse reaction at k1−a2, where a,
b, and c denote the respective concentrations, and k are
rate constants. Combining the reactions,

da

dt
= k1+ab− k3+ca− k1−a

2

db

dt
= k2+bc− k1+ab− k2−b

2

dc

dt
= k3+ca− k2+bc− k3−c

2

If we neglect reverse reactions as was done in [4], effec-
tively assuming that ki+ ≫ ki−, we get a simpler sys-
tem. Now we introduce diffusion, allowing species to
move through space along concentration gradients. We
obtain the partial differential equations:

∂a

∂t
= k1ab− k3ca+ ν∇2a (1)

∂b

∂t
= k2bc− k1ab+ ν∇2b (2)

∂c

∂t
= k3ca− k2bc+ ν∇2c (3)

where the Laplacian ∇2 tends to flatten down bumps and
fill in valleys in the concentrations. We’ve assumed each
of the species diffuse according to ν.

III. ANALYSIS

In this section we analyse the model. First, we restrict
the problem to a plane in the 3-dimensional space of reac-
tant concentrations. Then, linear stability is evaluated,
revealing a critical point likely to exhibit oscillation. A
numerical computation investigates the behavior of the
reaction around this equilibrium.

To begin, we could nondimensionalize our equations
with

a =
ν

k1
u, b =

ν

k1
v, c =

ν

k3
w, and t =

1

ν
τ

However, this breaks a symmetry in the equations, which
turns out to be a pain in the neck. Instead, to begin we
only scale time to eliminate ν:

a = νu, b = νv, c = νw, and t =
1

ν
τ

Note that

∂

∂t
=

∂τ

∂t

∂

∂τ
= ν

∂

∂τ

Substituting these in, we get the system

∂u

∂τ
= u(k1v − k3w) +∇2u (S.1)

∂v

∂τ
= v(k2w − k1u) +∇2v (S.2)

∂w

∂τ
= w(k3u− k2v) +∇2w (S.3)

Then we’ll say t ≡ τ for convenience.
Note that the equations are not hyperbolic, and so the

method of characteristics which we have studied in class
unfortunately will not help us here.

A. Dimension Reduction

Now, we should try to see how this system behaves, and
whether it’s a reasonable model for an excitable medium.
For traveling waves, we need the medium to be able to
"reset" after a wide excursion through its state space. If
it could get "stuck" after one wave passes through, we
have a problem. We might look for a limit cycle, that
is, a closed trajectory in its state space which has other
trajectories spiraling into it. Or, there might be a center,
around which a family of closed trajectories exists.

Let’s imagine a spatially homogeneous state, so that
diffusion can be neglected in S.1-S.3. Firstly, notice that
the problem can be simplified with a change of coordi-
nates. Intuitively from the underlying chemical mecha-
nism, each unit of species A, B, and C can only trans-
form into one unit of a different species; the overall sum
should be conserved. Formally, define the total amount
of reactants

R(t) ≡ u+ v + w

for which the spatially homogeneous system gives the
time derivative

Ṙ = k1uv − k3uw + k2vw − k1uv + k3uw − k2vw = 0

implying the total R is conserved, as expected. This
means that instead of the full (u, v, w)-space, our system
is restricted to a certain affine subset—a plane parame-
terized by R. Let’s define a coordinate system on this
space.



3

The plane for a given R includes the points (R, 0, 0),
(0, R, 0), and (0, 0, R). Thus a normal vector for it is
(1, 1, 1), and a vector in the plane is (0, R, 0)−(R, 0, 0) ∝
(−1, 1, 0). We can obtain an orthogonal basis with one
more vector from the cross product,

(1, 1, 1)× (−1, 1, 0) = (−1,−1, 2)

Now note that (R/3, R/3, R/3) is a point in the plane,
which we’ll define as the origin. Call S ≡ R/3. This lets
us introduce new variables, (ξ, χ), to parameterize the
plane as follows:

(u, v, w) = (S, S, S) + ξ(−1,−1, 2) + χ(−1, 1, 0) (4)

To go in the opposite direction, obtaining χ and ξ for a
given (u, v, w), we solve the system

u = S − χ− ξ

v = S + χ− ξ

w = S + 2ξ

These are linearly dependent. Solving gives

(ξ, χ) =

(
w − S

2
,
2v + w − 3S

2

)
(5)

Of course we can also calculate time derivatives, recalling
that S ∝ R is constant.

ut = −χt − ξt

vt = χt − ξt

wt = 2ξt

If we substitute into the space-independent S.1-S.3,

−χt − ξt = k1(S − χ− ξ)(S + χ− ξ)

− k3(S − χ− ξ)(S + 2ξ)

χt − ξt = k2(S + χ− ξ)(S + 2ξ)

− k1(S − χ− ξ)(S + χ− ξ)

2ξt = k3(S − χ− ξ)(S + 2ξ)

− k2(S + χ− ξ)(S + 2ξ)

we obtain the derivative ξt from the third equation and
χt by subtracting the first from the second.

2ξt = k3(S − χ− ξ)(S + 2ξ)

− k2(S + χ− ξ)(S + 2ξ)
(Q.1)

2χt = k2(S + χ− ξ)(S + 2ξ)

− 2k1(S − χ− ξ)(S + χ− ξ)

+ k3(S − χ− ξ)(S + 2ξ)

(Q.2)

B. Linear Stability

A 2-dimensional system in hand, we look for the critical
points, where the derivatives ξt and χt vanish. From
above, we see that ξt and χt are linear combinations of
ut, vt, and wt. Therefore we can equivalently look for
the stationary points of the 3-dimensional system for the
appropriate value of R. Note that (u, v, w) remains in
the positive octant; concentrations begin positive, and
S.1-S.3 will not allow them to cross zero. In the first
octant, by inspection we have solutions for (u, v, w),

X̃1 = (R, 0, 0), X̃2 = (0, R, 0), X̃3 = (0, 0, R) (6)

No equilibria exist where just one component is 0; this
would clearly require one of the other two to be zero to
be consistent. Cross-substituting, we also find the line

X̃∗
0 =

(
r∗,

k3
k2

r∗,
k1
k2

r∗
)

where r∗ is such that the components sum to R. Since
R is arbitrary, so is r∗, and we’re free to scale along the
line by k2 to get a nicer looking point,

X̃0 = (k2r, k3r, k1r) (7)

where r is defined by r(k1 + k2 + k3) = R. Let’s fix R

and use 5 to transform to (ξ, χ).

X1 =

(
−S

2
, −3S

2

)
(8)

We could do the same for X̃2 and X̃3, but due to sym-
metry in the equations, the qualitative behavior of each
will be the same as X1. As for X̃0, in (ξ, χ) coordinates

X0 =

(
k1r − S

2
,
2k3r + k1r − 3S

2

)
which for consistency we can write in terms of S or R, as

X0 =

(
S(2k1 − k2 − k3)

2(k1 + k2 + k3)
,

3S(k3 − k2)

2(k1 + k2 + k3)

)
(9)

Next, we’ll look at the linear stability of these points,
so we linearize Q.1-Q.2 for small perturbations around
the equilibria. That is,(

ξ

χ

)
t

=

(
(ξt)ξ (ξt)χ
(χt)ξ (χt)χ

)(
δξ

δχ

)
= J

(
δξ

δχ

)
(10)

where δξ and δχ are small deviations from an equilib-
rium, and the Jacobian is evaluated at that equilibrium.
We calculate the derivatives:

2ξtξ = −k2(S + 2χ− 4ξ) + k3(S − 2χ− 4ξ)



4

2ξtχ = −k2(S + 2ξ)− k3(S + 2ξ)

2χtξ = 4k1(S − ξ) + k2(S + 2χ− 4ξ) + k3(S − 2χ− 4ξ)

2χtχ = 4k1χ+ k2(S + 2ξ)− k3(S + 2ξ)

Let’s start with X1, for which

S + 2χ− 4ξ = 0, S − 2χ− 4ξ = 6S = 2R,

S + 2ξ = 0, S − ξ =
3S

2
=

R

2

yielding

J1 = R

(
k3 0

(k1 + k3) −k1

)
with eigenvalues, one of which is positive,

λ1 ∝ −k1 and k3

Then for X0, I used the Sage computer algebra system
to evaluate the derivatives.

J0 =
R

2(k1 + k2 + k3)

(
k1k2 − k1k3 −k1k2 − k1k3

k1k2 + k1k3 + 4k2k3 k1k3 − k1k2

)
with purely imaginary eigenvalues

λ0 ∝ ±2i
√
k21k2k3 + k1k22k3 + k1k2k23

These linearizations suggest that the equilibria X1-X3

at the corners of the plane are unstable; a certain di-
rection of perturbation has a positive eigenvalue, and
therefore grows. This is good, as to produce waves, the
system cannot get "stuck" anywhere. Meanwhile, with
purely imaginary eigenvalues, the equilibrium X0 in the
middle exhibits promising oscillatory behavior; no small
perturbation direction tends to grow or shrink.

C. Behavior near X0

The linear analysis suggests we should investigate the
behavior of solutions near X0. A priori, due to the
Poincaré-Bendixson theorem [6], we can infer that these
solutions should have periodic cycles and no chaotic be-
havior. However, the system is nonlinear, and we can-
not expect the linearization to capture its dynamics far-
ther from the critical point; whether limiting periodic
behavior—a limit cycle—exists, is unclear to me. To fig-
ure this out, we’ll construct a phase portrait numerically.

We integrate the equations starting from points near
the equilibrium using the common Runge-Kutta 4th or-
der scheme, with my previous implementation in C++
(/misc/rk4.cpp). A subset of the points from each tra-
jectory is plotted (/misc/phase.py) in Figure 2.

FIG. 2: Phase portrait of system around X0 in ξ − χ plane
for all rate constants equal. Trajectories start at the equilib-
rium point plus multiples of (0.1, 0.1). The equilibrium point
behaves as a center, with a continuous set of closed orbits.

We can see that there exist closed orbits around the
equilibrium. No trajectories seem to eventually spiral
into a specific orbit, that is, there is no limiting periodic
behavior. The period of these oscillations depends on the
initial conditions, as shown in Figure 3—different orbits
take different amounts of time to close, and specifically
larger deviations from equilibrium take longer.

This reveals a distinction between the model in [4]
and the physically-based Oregonator model. According
to experimental characterization in [5], BZ reactions ex-
hibit limit cycle behavior; the reaction should eventually
approach oscillations with amplitude and period deter-
mined only by the rates of the reaction mechanism, inde-
pendent of initial concentrations [3]. Qualitatively, this is
very different from what we see in our simplified model,
where perturbations of the system will shift the orbit
permanently, and the orbits depend not only on the rate
constants, but also reactant species concentrations.

D. Wavefront Propagation

That traveling waves should arise when diffusion is
reintroduced to the system is not necessarily clear. Un-
fortunately, with still two second-order equations, I’m
not sure how to study this analytically. Our discovery
of closed orbits implies the existence of yet another con-
served quantity in the system. This would permit us to
reduce the dimension once more, and from there it may
be possible to look for traveling wave solutions analyti-
cally. Unfortunately, it is not obvious what this quantity
is, so we will move on to purely numerical means.



5

FIG. 3: First 400 time steps (plotted every 5th) of phase
portrait. Notice the period of oscillations differs between ini-
tial states.

IV. SIMULATION

Here, we attempt to implement the reaction-diffusion
model in silico with the goal of reproducing traveling
and spiral waves from the model. First, we build a crude
implementation on a coarsely discretized system, in the
form of 2D cellular automata. Second, we construct an
implicit-explicit scheme for evolving the system.

A. Cellular Automata

It was suggested by R. Rosales that the wave phe-
nomena we’re looking for can appear even in a sys-
tem where diffusion is replaced by an approximation—
averaging neighbors—on a square discrete grid. Indeed,
cellular automata have been used to simulate the BZ re-
action, and the model we’ve considered. We build the
automata described in [4] with some modifications.

The idea is simple: for each square on a grid, we have a
value of u, v, and w. For the next time, we calculate an
explicit step using S.1-S.3. Then, to emulate diffusion,
use the average of neighboring cells. In our version, we
change by a fraction of the difference between a cell and
the average of its neighbors, to mimic an exponential
relaxation. It is noted in [4] that one should constrain
concentrations to a fixed range, a constraint "included
so that the values stay in range for the color display." In
fact, we found this clamping was important for stability;
their method implicitly uses a large timestep, which can
explode. In ours, a timestep is explicitly specified.

The algorithm was implemented in Rust
(/src/bin/automaton.rs). Figures 4 and 5, show
that the diffusion works as expected, and that when

FIG. 4: Time evolution of a line of initial concentrations
(4, 6, 8) in cellular automaton, with weak diffusion and k1 =

k2 = k3. The concentration of species A is shown initially
(left) and after 100 iterations (right). A wave propagates
outwards and diffuses over time, and oscillations occur in the
enclosed region. When diffusion is stronger, the front quickly
loses its sharpness.

FIG. 5: The effects of diffusion only, under the same condi-
tions as Figure 4.

the reaction mechanism is present, a wavefront forms.
In Figure 6 and 7, the cells are initialized with random
concentrations, and evolve 100 time steps. Traveling
waves form into target and spiral patterns as claimed.

The spirals in Figure 6 don’t look like those in the
actual BZ reaction; they are much denser and less orga-
nized. It may be that the difference in periodic behav-
ior between this model and the Oregonator contributes.
On the other hand, it’s believed that small perturbations
originate waves [2], so it is reasonable that our random
initial conditions produce many more sources than would
appear in reality. Then because colliding wavefronts an-
nihilate in this medium, the waves cannot propagate long
distances, forming this dense structure.

As an aside, in future work it may be interesting to ex-
plore what kinds of initial conditions start a spiral or tar-
get pattern, by initializing smaller patches of the domain
randomly, seeing how they evolve, and characterizing the
random patches that yield a given long term behavior.



6

FIG. 6: Results from randomly initialized cells, with weak
diffusion (0.3) and k1 = k2 = k3 = 1. Dense spiraling patterns
form, with many sources.

FIG. 7: Results from randomly initialized cells, with weak
diffusion (0.3) and k1 = 1, k2 = k3 = 0.7. Note the similar
wavelengths of traveling target pattern waves.

Interestingly, as is most apparent in Figure 7, most of
the centers appear to emit waves with a very similar pe-
riod and wavelength, despite the continuum of periods
available in the reaction system. This suggests other fac-
tors at play, perhaps some balance between the diffusion
rate and the reaction rates which prefers a certain orbit as
in Figure 2, thereby determining a wavelength and speed.
A study to perform would be to vary the diffusion rate
alone, and see how this affects the waves. In brief testing,
a faster diffusion rate (0.5) produced thicker waves, and a
slower one (0.1) led to more and thinner spiral structures
appearing. More systematic characterization would be
necessary for insight into the mechanism.

B. Implicit-Explicit

Finally, we attempt a solution to the partial differen-
tial equations numerically via an implicit-explicit (ImEx)
scheme. The general idea rests on fractional step meth-
ods which, as described in class, integrate differential
equations with multiple terms: For an equation of form

dy

dt
= f(y) + g(y)

one can evolve the solution y → y∗ with a step corre-
sponding to f(y), and then from the new y∗ take another
step corresponding to g(y∗). This allows the mixing of
different schemes to compute different terms.

This is advantageous because the linear diffusion terms
in our equations are known to be "stiff," so we would like
to use an implicit method, which would have the key
feature of being stable. However, the nonlinear reaction
terms are expensive to solve implicitly, so we will use a
simpler explicit step.

Like in the cellular automata, we discretize space and
time. Only now, we introduce diffusion by considering
derivatives, instead of averaging neighbors. To do this,
approximate derivatives are taken at a given point using
finite differences, e.g. between neighbors in space-time.

The ImEx method is to be implemented in Rust. Ex-
plicit steps are calculated with Runge-Kutta 2nd order,
and then trapezoidal rule is used for the implicit steps.

As of 4/29/2022, I have not had the time to
figure out the implicit scheme. I may try to do
so before the last day of classes, but for now, I’m
submitting this section as is.

V. SUMMARY

Although we’ve discovered that Philip Ball’s simpli-
fied model of the Belousov-Zhabotinsky reaction as de-
scribed by [4] is rather different from the BZ reaction and
its physically-based "Oregonator" model, the system is
regardless rich and interesting. A cursory examination
found that the system conserves total reactant, reduc-
ing its dimension and restricting possible behaviors. We
calculated all reachable equilibria to be linearly unsta-
ble, except one with oscillations which we deduced to
yield closed periodic orbits that contribute to wave phe-
nomena. Computation confirmed this and did not find
a limit cycle, leading us to conclude the system is qual-
itatively different from the BZ reaction. However, sim-
ulation in cellular automata showed it still manages to
produce traveling and spiral wave phenomena in a man-
ner reminiscent of the real thing, and also suggests some
more interesting things to investigate!



7

[1] Zykov, V. S., 2018. Spiral wave initiation in excitable
media. Philosophical Transactions of the Royal Soci-
ety A: Mathematical, Physical and Engineering Sciences,
376(2135), p.20170379.

[2] Winfree, A. T., 1974. Rotating Chemical Reactions. Sci-
entific American, 230(6), pp.82-95.

[3] Field, R. & Noyes, R., 1974. Oscillations in chemical sys-
tems. IV. Limit cycle behavior in a model of a real chem-
ical reaction. The Journal of Chemical Physics, 60(5),
pp.1877-1884.

[4] Turner, A., 2009. A Simple Model of the Belousov-
Zhabotinsky Reaction from First Principles. Implementa-
tion note.

[5] Ganapathisubramanian, N. et al., 1980. Limit cycle be-
haviour in the Belousov-Zhabotinskii oscillatory reaction.
Proc. Indian Acad. Sci., 89(3), pp.235-239.

[6] Given a differential equation in the plane, for t → ∞,
any given solution x(t) which remains in a bounded region
must converge to either a fixed point or a periodic cycle.
Our solutions are constrained to a plane, and bounded by
its intersections with the boundaries of the first octant.
Additionally, our linearization suggests they will not de-
scend to the fixed point.



8

Appendix A: Abridged rk4

namespace rk4
{

rk4Solve::rk4Solve(std::vector<double> state, double time, double timestep,
std::vector<double (*)(std::vector<double>, double)> inFunctions)

: t(time), dt(timestep), n(state.size()), stateCurrent(state), derivatives(inFunctions) { }

std::vector<double> rk4Solve::iterate()
{

std::vector<double> stateNext (n), stateIntermediate (n);
std::vector<double> k1 (n), k2 (n), k3 (n), k4 (n);

//Obtain k1 (derivative vector at current state)
for (int i = 0; i < n; i++) {

k1[i] = derivatives[i](stateCurrent, t);
}

//Obtain k2 (derivative vector at half timestep, linear from stateCurrent along k1)
for (int i = 0; i < n; i++) {

stateIntermediate[i] = stateCurrent[i] + k1[i] * dt / 2.0;
}
for (int i = 0; i < n; i++) {

k2[i] = derivatives[i](stateIntermediate, t + dt/2.0);
}

//Obtain k3 (derivative vector at half timestep, linear from stateCurrent along k2)
for (int i = 0; i < n; i++) {

stateIntermediate[i] = stateCurrent[i] + k2[i] * dt / 2.0;
}
for (int i = 0; i < n; i++) {

k3[i] = derivatives[i](stateIntermediate, t + dt/2.0);
}

//Obtain k4 (derivative vector at full timestep, linear from stateCurrent along k3)
for (int i = 0; i < n; i++) {

stateIntermediate[i] = stateCurrent[i] + k3[i] * dt;
}
for (int i = 0; i < n; i++) {

k4[i] = derivatives[i](stateIntermediate, t + dt);
}

//Update stateNext using k
for (int i = 0; i < n; i++) {

stateNext[i] = stateCurrent[i]
+ ((k1[i] + 2 * k2[i] + 2 * k3[i] + k4[i]) / 6.0) * dt;

}
//Update stateCurrent and time
stateCurrent = stateNext;
t = t + dt;
return stateNext;

}
}



9

// client code

//Derivative functions
//x and y are functions of the three reactant concentrations and the sum of concentration
double xprime(std::vector<double> x, double time) {

double xp = (k3 * (S - x[1] - x[0]) * (S + 2 * x[0])) -
(k2 * (S + x[1] - x[0]) * (S + 2 * x[0]));

return xp;
}

double yprime(std::vector<double> x, double time) {
double yp = k2 * (S + x[1] - x[0]) * (S + 2 * x[0]) -

2 * k1 * (S - x[1] - x[0]) * (S + x[1] - x[0])
+ k3 * (S - x[1] - x[0]) * (S + 2 * x[0]);

return yp;
}

int main()
{

int niter;
int npoints = 1; // number of starting points
double dx = 0.1; // size of step away from equilibrium point
double dt;
// Initial state
double x0, y0;

// equilibrium position
x0 = S * (2 * k1 - k2 - k3) / (2 * (k1 + k2 + k3));
y0 = 3 * S * (k3 - k2) / (2 * (k1 + k2 + k3));

// differential equations
std::vector<double (*)(std::vector<double>, double)> diffeqs;
diffeqs.push_back(xprime);
diffeqs.push_back(yprime);

// solve and output
for (int k = 1; k < npoints + 1; k++) {

std::string fname = std::to_string(k);
// Initialize solver
std::vector<double> init{ x0 + k*dx, y0 + k*dx };
std::cout << "Starting at " << init[0] << " " << init[1] << std::endl;
rk4::rk4Solve Solver(init, 0.0, dt, diffeqs);

for (int j = 0; j < niter; j++) {
Solver.iterate();
for (double x : Solver.stateCurrent) {

std::cout << x << " ";
file << x << ",";

}
file << "\n";
std::cout << std::endl;

}} return 0; }



10

Appendix B: Abridged automaton and reactdiff

// client code: automaton.rs
let mut grid = reactdiff::ReacDiffGrid::random(300, 3);
for t in 0..time_steps {

grid.diffuse(relaxation);
if !diff_only {grid.ball_model([k1, k2, k3, DT]);}
println!("Time: {}", t);

}

// library: reactdiff
use rand::Rng;
use ndarray::{array, s, Array2, Array3};

// Store the concentrations of A,B,C on a 2D arrays
pub struct ReacDiffGrid {

pub width: usize,
pub species: usize,
pub a: Array3<f32>, // first two dimensions are position, third is species

}

// Initialize
impl ReacDiffGrid {

// create with zeroes
pub fn new(width: usize, species: usize) -> Self {

Self{a: Array3::<f32>::zeros([width, width, species]), width: width, species: species}
}

// create with random values between 0 and 1
pub fn random(width: usize, species: usize) -> Self {

let mut rng = rand::thread_rng();
let mut grid = ReacDiffGrid::new(width, species);
for elem in grid.a.iter_mut() {

*elem += rng.gen::<f32>();
}
grid

}

// fill a block
pub fn write(&mut self, xrange: std::ops::Range<usize>, yrange: std::ops::Range<usize>, spec_idx: usize, value: f32) {

for x in xrange {
let yr = yrange.clone();
for y in yr {

self.a[(x,y, spec_idx)] = value;
}

}
}

// fill a block randomly
pub fn write_random(&mut self, xrange: std::ops::Range<usize>, yrange: std::ops::Range<usize>, spec_idx: usize, scale: f32) {

let mut rng = rand::thread_rng();
for x in xrange {

let yr = yrange.clone();



11

for y in yr {
self.a[(x,y, spec_idx)] = rng.gen::<f32>() * scale;

}
}

}
}

// Evolution
impl ReacDiffGrid {

// Apply ball reaction model to each cell
// params: k1, k2, k3, dt
pub fn ball_model(&mut self, params: [f32; 4]) {

// du/dt = u(k1*v - k3*w)
// dv/dt = v(k2*w - k1*u)
// dw/dt = w(k3*u - k2*v)
assert_eq!(self.a.shape()[2], 3);
// for each cell, calculate evolution and add it
for mut x in self.a.rows_mut() {

// TODO: vectorize
let du = x[0] * (params[0]*x[1] - params[2]*x[2]) * params[3];
let dv = x[1] * (params[1]*x[2] - params[2]*x[0]) * params[3];
let dw = x[2] * (params[2]*x[0] - params[2]*x[1]) * params[3];
x += &ndarray::ArrayView::from(&array![du, dv, dw]);
// clamp values
for elem in &mut x {

if *elem < 0.0 {
*elem = 0.001;

}
if *elem > 10.0 {

*elem = 10.0;
}

}
}

}

// Apply diffusion, with relaxation towards local average defined by relax
// e.g. relax 0.5 -> if currently 2 and average is 1, next value is 1.5
pub fn diffuse(&mut self, relax: f32) {

assert!(relax > 0. && relax < 1.);
// calculate averages with hard boundary condition
let mut d: Array2<f32> = Array2::<f32>::zeros((self.width, self.width));
for i in 0..self.species {

// TODO: Get a convolution to work with periodic BC and get rid of the naive implementation
let avg = self.a.sum() / (self.width * self.width) as f32;
let species_i = self.a.slice(s![.., .., i]);
// Calculate averages over 3x3 windows except on edges
for j in 0..self.width-2 {

for k in 0..self.width-2 {
let window = species_i.slice(s![j..j+3, k..k+3]);
d[(j+1, k+1)] = ((window.sum() / 9.) - species_i[(j+1, k+1)]) * relax

}
}



12

// Pad averages on the edges with zero
d.slice_mut(s![0, ..]).fill(0.);
d.slice_mut(s![-1, ..]).fill(0.);
d.slice_mut(s![.., 0]).fill(0.);
d.slice_mut(s![.., -1]).fill(0.);
// Add averages to cells
let mut slice = self.a.slice_mut(s![.., .., i]);
slice += &ndarray::ArrayView::from(&d);
d = Array2::<f32>::zeros((self.width, self.width)); // reset

}
}

}

// Misc
impl ReacDiffGrid {

// Compute the sum of all species
pub fn sums(&self) -> f32 {

let mut sum: f32 = 0.;
for elem in &self.a {

sum += elem;
}
sum

}
}


	Introduction
	Reaction-Diffusion Model
	Analysis
	Dimension Reduction
	Linear Stability
	Behavior near X0
	Wavefront Propagation

	Simulation
	Cellular Automata
	Implicit-Explicit

	Summary
	References
	Appendix A: Abridged rk4
	Appendix B: Abridged automaton and reactdiff

